Learning Points - Spot Cards and Opening Leads
by Steve Moese (Mike Purcell ed.)
Probabilities from Richard Pavlicek's Card Combination Analyzer.

What is declarer's best strategy to make this 3N contract? Assume Declarer must give up the lead to West one time before making the contract. Let's assume declarer's objective is to retain a stopper in , either by creating a $2^{\text {nd }}$ winner or by blocking the suit. What is declarer's best play from dummy to trick 1 ?

Let's look at:

1) the 5 lead itself;
2) popular spot card leads; and
3) card combination analysis
to define the decision space for declarer. This is beyond analysis possible at the table.

What can we glean from the 5 opening lead? There's a preference for leading a major in this auction (though less so since opening $1 N$ with 5 card majors has become more popular). Leading a minor suit implies length, and lack of a useful 4 -card major. A 4 or 5 card suit seems likely. We can eliminate singletons and doubletons as unlikely (and too inspired for us).

Can West have 6 or 7 ? If the 5 is the $4^{\text {th }}$ card, then West cannot hold 6 or 7 \& (there must be 3 cards bigger than the 5 and there's only one smaller, the 24). Similarly if $5^{\text {th }}$ best West cannot hold 7 cards (4 above, 1 below is 6 cards maximum).

West might be using one of several popular opening lead strategies:

1) $4^{\text {th }}$ best;
2) $4^{\text {th }}$ best from 5 cards (not a strategy but a useful filter for our Analysis);
3) $3^{\text {rd }}$ best from 3 , or $4^{\text {th }}$ best;
4) $5^{\text {th }}$ best from length;
5) $3^{\text {rd }}$ best from 3 or 4 ;
6) Attitude (1 or more Honor, $3+$ cards length).

We can combine 4) and 5) to mimic $3^{\text {rd }}$ and $5^{\text {th }}$ best spot card leads. Other opening lead strategies are possible - we leave them to you.

Some card combination analysis simplifies inconsequential cards to x's for convenience as follows: KQ109654 becomes $\&$ KQ109xxx. However, the 2 is significant information and filters out certain hands. Let's look at what cards West could hold. There are 64 possible card combinations for West (where 4, 5 and 6 are assigned " x ". There are 128 individual instances when specific spot cards 4,5,6 are considered). 14 cases don't include the 25 , and another 7 are singletons or doubletons, inconsistent with length assumptions. This leaves 43 possible cases for the 5 from 3 or more cards. Of these 43 , some are eliminated depending on what opponent's lead strategy / signals are.

\#	West	East	Ways	\%
1	KQT9xxx	-	1	0.26
2	KQT9xx	x	3	1.45
3	KQT9x	xx	3	2.18
4	KQT9	xxx	1	0.89
5	KQTxxx	9	1	0.48
6	KQTxx	9 x	3	2.18
7	KQTx	9 xx	3	2.66
8	KQT	9 xxx	1	0.89
9	KQ9xxx	T	1	0.48
10	KQ9xx	Tx	3	2.18
11	KQ9x	Txx	3	2.66
12	KQ9	Txxx	1	0.89
13	KQxxx	T9	1	0.73
14	KQxx	T9x	3	2.66
15	KQx	T9xx	3	2.66
16	KQ	T9xxx	1	0.73
17	KT9xxx	Q	1	0.48
18	KT9xx	Qx	3	2.18
19	KT9x	Qxx	3	2.66
20	KT9	Qxxx	1	0.89
21	KTxxx	Q9	1	0.73
22	KTxx	Q9x	3	2.66
23	KTx	Q9xx	3	2.66
24	KT	Q9xxx	1	0.73
25	K9xxx	QT	1	0.73
26	K9xx	QTx	3	2.66
27	K9x	QTxx	3	2.66
28	K9	QTxxx	1	0.73
29	Kxxx	QT9	1	0.89
30	Kxx	QT9x	3	2.66
31	Kx	QT9xx	3	2.18
32	K	QT9xxx	1	0.48
33	QT9xxx	K	1	0.48
34	QT9xx	Kx	3	2.18
35	QT9x	Kxx	3	2.66
36	QT9	Kxxx	1	0.89
37	QTxxx	K9	1	0.73
38	QTxx	K9x	3	2.66
39	QTx	K9xx	3	2.66
40	QT	K9xxx	1	0.73
41	Q9xxx	KT	1	0.73
42	Q9xx	KTx	3	2.66
43	Q9x	KTxx	3	2.66
44	Q9	KTxxx	1	0.73
45	Qxxx	KT9	1	0.89
46	Qxx	KT9x	3	2.66
47	Qx	KT9xx	3	2.18
48	Q	KT9xxx	1	0.48
49	T9xxx	KQ	1	0.73
50	T9xx	KQx	3	2.66
51	T9x	KQxx	3	2.66
52	T9	KQxxx	1	0.73
53	Txxx	KQ9	1	0.89
54	Txx	KQ9x	3	2.66
55	Tx	KQ9xx	3	2.18
56	T	KQ9xxx	1	0.48
57	9xxx	KQT	1	0.89
58	9xx	KQTx	3	2.66
59	9x	KQTxx	3	2.18
60	9	KQTxxx	1	0.48
61	xxx	KQT9	1	0.89
62	xx	KQT9x	3	2.18
63	x	KQT9xx	3	1.45
64	-	KQT9xxx	1	0.26
128				99.92

Here's an example to illustrate. Assume $4^{\text {th }}$ best spot card leads. Give West $\mathrm{KQ} 10 \mathrm{xx} .4^{\text {th }}$ best is possible only with $\operatorname{sxx}^{2}=54$: KQ1065, KQ1064, KQ1054. 2 of 3 instances for this case are eliminated. The specific 5 reduces the ways contributing to this holding.

How does West's lead strategy affect Declarer's choice of play to trick 1? The 22 wins when the $\mathbf{2} \mathrm{KQ}$ are with West or EW can take no more than 3 tricks, and loses when the honors are split. The A wins when block or EW can take no more than $3 *$ tricks. When both honors are with East, both plays win. Since we can afford to lose the lead only once, any $4 / 3 *$ split allows either play. Let's filter the relevant instances based on each of the 6 strategies outlined above.

Lead Strategy	\# Relevant Cases	$\begin{gathered} \text { \# Instances } \\ \text { Reduced by } 5 \end{gathered}$	Impossible Lengths, \# cards	$\begin{gathered} \text { wins } \% \\ \hline \end{gathered}$	$\begin{gathered} \hline 2 \\ \text { wins } \% \end{gathered}$	\% Best
$4^{\text {th }}$ best	19	13	6 or 7	10.4	6.5	61\% A
$4^{\text {th }}$ best; exactly 5 cards	10	4	6 or 7	5.1	2.9	64\% A
$3^{\text {rd }}$ best 3 cards, or $4^{\text {th }}$ best. Not topless 3 cards nor KQx	23	19	6 or 7	14.1	14.6	51\% 2
$5^{\text {th }}$ best	14	6	7	4.6	5.3	54\% 2
$3{ }^{\text {rd }}$ Best from 3 or 4	22	18	5,6 or 7	20.4	20.4	even
Attitude	34	22	None	27.3	28.8	$51 \% 2$

What can we conclude? South's play to trick one depends strongly on West's \& length and carding agreeements. If you believe West leads $4^{\text {th }}$ best and has 4 or $5 \Perp$, playing the $\& A$ to block is best.

Observations

1) Knowing West has 5 cards makes the right play the A if they lead $4^{\text {th }}$ best.
2) Including West's 3-card suit options reduces the odds to very close to 50:50, with a small advantage for the 2 in each case.
3) $5^{\text {th }}$ best includes leads from 6 card suits. Specifically, the 2 cases where East holds a singleton $\& \mathrm{~K}$ or \approx Q allows either choice at trick 1 . That shifts odds enough to favor the 2 , albeit slightly. Few today are passive defending with a 6 card suit and $5-8 \mathrm{HCP}$ over a strong 1 NT opening. West will not hold $\star \mathrm{KQ} 109 \mathrm{xx}$ and the $\star \mathrm{K}(8 \mathrm{HCP})$ and pass at their first turn. Adjusting probabilities for this lack of competitive bidding swings the choice back to the A (55\%)!
4) Both " 3 rd or $5^{\text {th } ", ~ a n d ~ A t t i t u d e ~ l e a d s ~ k e e p ~ m o r e ~ r e l e v a n t ~ c a s e s ~ i n ~ p l a y ~(~} 36$ and 34 of 43 respectively). These lead strategies are less helpful to a knowledgeable declarer. Use these lead strategies where you want to communicate interest while giving up less information.

URLs:

Deeper Finesse: http://www.cincybridge.com/alerts/Alert\ April\ 2009\ Version\ 2.pdf
Richard Pavlicek Card Combination Analyzer: http://www.rpbridge.net/cgi-bin/xcc1.pl
Richard Pavlicek Home Page: http://www.rpbridge.net/rpbr.htm

Keywords: Spot Card Leads, Card Combination Analysis, Relevant Cases, Information communicated

